112 research outputs found

    Polyribosomes from Peas

    Full text link

    Protein Storage Bodies and Vacuoles

    Full text link

    Characterization of Polypeptides Corresponding to Clones of Maize Zein mRNAS

    Full text link

    Identification and characterization of the maize arogenate dehydrogenase gene family

    Get PDF
    In plants, the amino acids tyrosine and phenylalanine are synthesized from arogenate by arogenate dehydrogenase and arogenate dehydratase, respectively, with the relative flux to each being tightly controlled. Here the characterization of a maize opaque endosperm mutant (mto140), which also shows retarded vegetative growth, is described The opaque phenotype co-segregates with a Mutator transposon insertion in an arogenate dehydrogenase gene (zmAroDH-1) and this led to the characterization of the four-member family of maize arogenate dehydrogenase genes (zmAroDH-1–zmAroDH-4) which share highly similar sequences. A Mutator insertion at an equivalent position in AroDH-3, the most closely related family member to AroDH-1, is also associated with opaque endosperm and stunted vegetative growth phenotypes. Overlapping but differential expression patterns as well as subtle mutant effects on the accumulation of tyrosine and phenylalanine in endosperm, embryo, and leaf tissues suggest that the functional redundancy of this gene family provides metabolic plasticity for the synthesis of these important amino acids. mto140/arodh-1 seeds shows a general reduction in zein storage protein accumulation and an elevated lysine phenotype typical of other opaque endosperm mutants, but it is distinct because it does not result from quantitative or qualitative defects in the accumulation of specific zeins but rather from a disruption in amino acid biosynthesis

    A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development

    Get PDF
    Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants

    Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 B139

    No full text
    Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 Final Technical Report and Patent Summary Dr. Brian A. Larkins, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721 Endosperm texture is an important quality trait in maize, as it influences the shipping characteristics of the grain, its susceptibility to insects, the yield of grits from dry milling, energy costs during wet milling, and the baking and digestibility properties of the flour. There appears to be a causal relationship between kernel hardness and the formation of zein-containing protein bodies, as mutations affecting protein body number and structure are associated with a soft, starchy kernel. In this project we used a variety of approaches to better understand this relationship and investigate the molecular and biochemical changes associated with starchy endosperm mutants. We characterized the distribution of zein mRNAs on endosperm rough endoplasmic reticulum (RER) membranes and the interactions between zein proteins, as each of these could influence the structure of protein bodies. Based on in situ hybridization, mRNAs encoding the 22-kD alpha- and 27-kD gamma-zeins are randomly distributed on RER; hence, mRNA targeting does not appear to influence the formation of protein bodies. Investigation of the interactions between zein proteins (alpha, beta, gamma, delta) with the yeast two-hybrid system showed that interactions between the 19- and 22-alpha-zeins are relatively weak, although each of them interacted strongly with the 10-kD delta-zein. Strong interactions were detected between the alpha- and delta-zeins and the 16-kD gamma- and 15-kD beta-zeins; however, the 50-kD and 27-kD gamma-zeins did not interact detectably with the alpha- and delta-zein proteins. The NH2- and COOH-terminal domains of the 22-kD alpha-zein were found to interact most strongly with the 15-kD beta- and 16-kD gamma-zeins, suggesting the 16-kD and 15-kD proteins bind and assemble alpha-zeins in protein bodies. Additional evidence supporting this hypothesis was obtained by showing that the starchy endosperm mutant, Mucuronate, appears to result from a defective 16-kD gamma-zein protein. By deletion mutagenesis, we identified domains within an alpha-zein that cause it to interact with other zein proteins, particularly gamma-zeins. This allowed us to develop a minimal alpha-zein gene construct that can be used as a vector to target heterologous proteins, such as green fluorescent protein, into protein bodies. We characterized the nature of storage proteins synthesized in the endosperm using a genomics analysis of endosperm ESTs. This study identified several new storage proteins and demonstrated the existence of novel protein storage vacuoles. We used mRNA transcript profiling of eight different starchy endosperm (opaque) mutants (o1, o2, o5, o9, o11, Mucronate, Defective endosperm B30, and floury2) to identify patterns of gene expression that are consistently altered in all of them, or that are unique to each one of them. These mutants fall into two subgroups: one systematically manifests an ''unfolded protein'' response (fl2, Mc, DeB30) and the other (o1, o2, o5, o9, o11) does not. Genes encoding cytoskeletal proteins are generally up-regulated in all the mutants, and this may be associated with higher lysine contents in several of them
    corecore